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Abstract

The solution of the shortest path problem in biochemical systems constitutes an important step for studies of their evolution. In

this paper, a linear programming (LP) algorithm for calculating minimal pathway distances in metabolic networks is studied.

Minimal pathway distances are identified as the smallest number of metabolic steps separating two enzymes in metabolic pathways.

The algorithm deals effectively with circularity and reaction directionality. The applicability of the algorithm is illustrated by

calculating the minimal pathway distances for Escherichia coli small molecule metabolism enzymes, and then considering their

correlations with genome distance (distance separating two genes on a chromosome) and enzyme function (as characterised by

enzyme commission number). The results illustrate the effectiveness of the LP model. In addition, the data confirm that propinquity

of genes on the genome implies similarity in function (as determined by co-involvement in the same region of the metabolic

network), but suggest that no correlation exists between pathway distance and enzyme function. These findings offer insight into the

probable mechanism of pathway evolution.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Metabolism is a complex network of enzymes,
substrates and co-factors. For some model organisms,
such as Escherichia coli, these networks are well
characterised (Karp et al., 2002), making them ideal
specimens for the study of metabolic systems.
Much work has already been done on modelling

metabolism (Edwards and Palsson, 2000a) and analys-
ing the possible mechanisms of pathway evolution
(Teichmann et al., 2001; Rison et al., 2002; Rison and
Thornton, 2002). The wealth of currently available data

can be used in the creation of models that may also be
applied for the simulation and optimisation of biochem-
ical systems. Optimisation techniques have already been
used in studies to meet objectives such as flux
maximisation, optimal growth and studying the effect
of gene deletions or additions to network robustness
(Varma and Palsson, 1993; Regan et al., 1993; Pramanik
and Keasling, 1997; Schilling et al., 1999; Edwards and
Palsson, 2000b; Burgard and Maranas, 2001).
Lately, there has been an increasing interest in

metabolic pathways as an indicator of ‘‘connectivity’’
between genes (Marcotte et al., 1999; Kolesov et al.,
2001; Rison et al., 2002). The pathway distance metric
can serve as such a measured descriptor of the relation-
ship between two enzymes in the metabolic network.
Minimal pathway distances are identified as the smallest
number of metabolic steps separating two enzymes: the
shortest path from one point in the network to another.
Metrics based on the application of shortest path

algorithms in biochemical systems have been considered
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before. Graph-oriented representations of metabolism
have been used to reconstruct metabolic pathways
(Arita, 2000). The large-scale organisation of cellular
networks has been addressed with a systematic com-
parative mathematical analysis based on a shortest path
algorithm that examines the properties of the metabolic
networks of different organisms (Jeong et al., 2000). A
quantitative basis for identifying a set of central
metabolites defining the core of metabolism by calculat-
ing the shortest distances between substrates has also
been established (Fell and Wagner, 2000).
There are two main models for the evolution of

metabolic pathways: the patchwork model and the
retrograde model (Rison and Thornton, 2002). The
patchwork model proposes that metabolic pathways
evolve by ad hoc recruitment of broad-specificity
enzymes (capable of catalysing a variety of metabolic
reactions); this suggests that metabolically close en-
zymes are no more likely to be functionally and
evolutionarily similar to the distant ones (Jensen,
1976). The retrograde model proposes that enzymes
are recruited in a direction reverse to the metabolic
‘‘flow’’, from the preceding enzyme in the pathway; this
suggests that nearby enzymes are likely to be evolutio-
narily related, and share some functionality (Horowitz,
1945).
Recently, the biochemical properties of the E. coli

small molecule metabolism (SMM) genes and enzymes
were investigated using a simple but inefficient graph
depth-first-traversal algorithm (Rison et al., 2002). The
work demonstrated that propinquity of SMM genes on
the E. coli chromosome was matched by propinquity of
the encoded proteins in the metabolic network. Patterns
of enzyme homologies and conservation of catalytic
chemistry between homologues were suggestive of a
patchwork model of pathway evolution, as opposed to
the retrograde model of evolution (Rison et al., 2002;
Rison and Thornton, 2002). A network approach was
also used to study the evolution of enzymes in
metabolism (Alves et al., 2002). Interestingly, the
authors find that neighbouring enzymes (less than 3
steps apart) in the reaction network are more likely to be
homologous than distant enzymes (more than 3 steps
apart). The work also suggests that blocks of similar
catalysis have evolved in metabolism.

The paper is structured as follows. First, the genera-
tion of the pathway dataset is discussed. The mathema-
tical programming formulation of an algorithm
designed to calculate minimal pathway distances based
on linear programming (LP) techniques (Lawler, 1976;
Cormen et al., 2001) is then described. The model is
applied to the E. coli metabolism, and the correlations of
minimal pathway distance with genome distance (i.e.,
the number of base pairs separating two SMM
genes on the E. coli chromosome), and enzyme function
(as described by Enzyme Commission (EC) number
(Enzyme Nomenclature, 1992)) are investigated. Both
the LP method itself, and the biological implications of
the analysis results are then discussed.

2. Methods

2.1. Generating the pathway dataset

Often, the metabolic network is subdivided into
individual pathways, as commonly depicted in biochem-
istry textbooks (e.g., Glycolysis, TCA, fatty-acid bio-
synthesis) (Voet and Voet, 1995). However, whilst each
individual pathway can be considered a separate entity,
and distinction can be made between inter- and intra-
pathway properties (Teichmann et al., 2001), metabo-
lism is a complex and complete network. Thus, the
division of metabolism into distinct pathways is
arbitrary (Gerrard et al., 2001). A possible way to deal
with this issue is to ignore these divisions, and instead
consider metabolism as a single network. Herein, such a
network approach, similar to that of Alves et al. (2002),
was adopted. When individual pathways are mentioned
in the text, this is done in order to simplify the
discussion; the analyses presented were performed on
the whole network, not on a ‘‘per pathway’’ basis.
The SMM network used was obtained from the

EcoCyc database (Karp et al., 2002). Even though
metabolite-centric representations of metabolic net-
works are the most common (Michal, 1998), in this
work a protein-centric representation was adapted
instead. As illustrated in Fig. 1, the enzymes are
considered as the nodes of the graph, and the substrates
are the edges (Gerrard et al., 2001).
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Fig. 1. A protein-centric (Gerrard et al., 2001) view of glycolysis and the tricarboxylic acid (TCA) cycle (adapted from EcoCyc; http://

www.ecocyc.org/). Enzymes are the nodes, substrates label the edges, and only key metabolites are shown. The arrows can be read as ‘‘produces a

substrate for’’ (full discussion in text). pgi: phosphoglucose isomerase; pfkA and pfkB: 6-phosphofructokinase-1 and 2; fbaB and fbaA: fructose

bisphosphate aldolase class I and II; tpiA: triose phosphate isomerase; epd: glyceraldehyde-3-phosphate dehydrogenase 2; gapA: glyceraldehyde-3-

phosphate dehydrogenase-A; pgk: phosphoglycerate kinase; gpmA and gpmB: phosphoglycerate mutase 1 and 2; pgmI: phosphoglycerate mutase,

co-factor independent; eno: enolase; pykF and pykA: pyruvate kinase I and II; aceE, aceF and lpdA: pyruvate dehydrogenase multienzyme complex;

gltA: citrate synthase; acnA and acnB: aconitase A and B; icdA: isocitrate dehydrogenase; subA, sucB and lpdA: 2-oxoglutarate dehydrogenase

complex; sucC and sucD: succinyl-CoA synthase complex; sdhA, sdhB, sdhC and sdhD: succinate dehydrogenase complex; fumA and fumC:

fumarase A and fumarase C; mdh: malate dehydrogenase.
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In Fig. 1, enolase (the gene product of eno) produces
substrate ‘‘phosphoenolpyruvate’’ for PykF and PykA.
Likewise, PykF and PykA produce ‘‘phosphoenolpyr-

uvate’’ for Eno when catalysing the reverse direction
reaction. Malate dehydrogenase (the gene product of
mdh) produces substrate ‘‘oxaloacetic acid’’ for GltA,
but GltA does not produce ‘‘oxaloacetic acid’’ for Mdh.
The minimal pathway distance from GltA to Mdh is
therefore 1 if directionality is not taken into account (all
edges are assumed to be bi-directional), but 7 if
directionality is considered (clockwise around the
tricarboxylic acid (TCA) cycle).

2.2. Genome distance

Genes encoding the SMM enzymes investigated were
assigned a chromosomal location by consulting the
Gene Table for E. coli (http://www.genome.wisc.edu/
pub/analysis/m52orfs.txt; Blattner et al., 1997). These
were used to derive genome distances for gene pairs, i.e.,
the smallest distance in base pairs (bp) separating the
two genes on the chromosome. Since the E. coli

chromosome isB4.6Mbp and only the smallest genome
distance is considered, two genes can, at most, be
separated by B2.3Mbp. In this paper, pairs are
sorted into bins containing genes separated by: less than
100, 101–1000, 1001–10,000, 10 001–100,000, 100,001–
1,000,000 and more than 1,000,000 bp. The choice of bin
sizes has a biological rationale. The first of these bins
accounts for genes likely to belong to the same operon
(Salgado et al., 2000), the second bin size approximates
to the average size of a prokaryotic gene (Casjens, 1998).
Subsequent bins were simply enlarged by an order of
magnitude.

2.3. Function similarity

Enzymes in the dataset were assigned an EC number
by reference to the GenProtEC database (Riley, 1998),
and following communications from the database
curators (Monica Riley and Margrethe Serres, pers.
comm.). EC numbers classify reactions within a
hierarchical four-level scheme (e.g., the reaction cata-
lysed by the enzyme glyceraldehyde-3-phosphate dehy-

drogenase has EC number 1.2.1.12) (Enzyme
Nomenclature, 1992). The level to which EC numbers
assigned to two enzymes are identical can therefore be
used as a measure of the similarity of the function they
perform (Martin et al., 1998; Todd et al., 2001).
Enzymes assigned identical EC numbers perform the
same biochemical function, enzymes with only the first
EC level in common share only very generalised
functional similarity (e.g., both oxidoreductases). Final-
ly, enzymes assigned completely different EC numbers
often share little or no functional commonalities.
Therefore, in this paper, the number of matching EC

levels (none, 1, 2, 3 or 4) is used as the functional
similarity metric.

3. Algorithm

Linear programming is an extensively used optimisation
technique, ranked as a significant scientific advance of the
mid-20th century. The numerous applications involve the
allocation of limited resources to competing activities in
the optimal way (Williams, 1999; Cormen et al., 2001).
These types of problems arise in varying situations,
ranging from graphs and network flows to plant manage-
ment (e.g., manufacturing and transportation of goods)
and economics. The most prominent method for solving
LP problems is the simplex method (Dantzig, 1963).
The recognition of the shortest possible directed path

from a specified source node to some other node of a
weighted, directed graph is known as a shortest path
problem. A variety of combinatorial problems can be
formulated and solved as shortest path problems. In
addition, a number of more complex problems can be
solved by procedures, which call upon shortest path
algorithms (Lawler, 1976).
An LP model (Lawler, 1976; Cormen et al., 2001)

applied to metabolic networks is suggested, capable of
finding in a single pass the minimal pathway distances
(shortest path lengths) of all enzymes in a network that
are reachable from a source enzyme (i�). First, the
notation used in the mathematical model is given:

Indices: i,j=enzymes.
Parameters: Lij=1 if there is an edge (link) from i to j;

0 otherwise.
Positive continuous variables: Di=distance from the i�

source enzyme to enzyme i.
For each source enzyme (i�) in the network, the

algorithm finds the minimal pathway distances to all other
enzymes by solving the following LP optimisation model:

maximise
X

i

Di ð1Þ

subject to

DjpDi þ 1 8ði; jÞ : Lij ¼ 1; ð2Þ

Di� ¼ 0; ð3Þ

DiX0: ð4Þ

Constraints (2) incorporate pathway information related
to reaction connectivity, circularity and reaction direction-
ality, facilitated by the use of parameter Lij (for reversible
reactions Lij=Lji=1; however, for irreversible reactions
Lij=1 and Lji=0). Constraint (3) assigns the initial value
of zero to enzyme i� to denote it as the source enzyme,
while constraint (4) requires all Di variables take positive
values.
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Finally, unbounded solutions can be avoided by
adding

DipT 8i; ð5Þ

where T is an appropriately large number. It should be
noted that if Di equals T at the final solution then it can
be concluded that there is no path connecting the i�

source enzyme with enzyme i in the network under
consideration. This feature of the algorithm is particu-
larly useful to identify cases where the connectivity of
part of the network is missing.
The algorithm was implemented within the general

algebraic modeling system (GAMS) software (Brooke
et al., 1998), using the CPLEX 6.5 LP solver (refinement
of the basic simplex method; Dantzig, 1963) for
solving LP problems such as the one in hand. Finally,
post-processing calculations were incorporated in
the algorithm to derive correlations of minimal
pathway distance with genome distance and function
similarity.

4. Results and discussion

4.1. SMM dataset

The SMM dataset was composed of 599 enzyme pairs
and 391 distinct metabolites. For 540 distinct enzymes a
chromosomal localisation was identified, and 507
enzymes were assigned an EC number. The dataset
was kindly provided by the curators of the EcoCyc
database (Karp et al., 2002). Pathway distances
obtained by the solution of the algorithm ranged from
1 to 26. After a certain pathway distance, the results
cease to be informative because: (i) they do not deviate
substantially from that found at the previous pathway
distance and/or (ii) they are based on such a small
number of pairs that their validity is questionable.
Therefore, in all plots, only pathway distances up to 15
are considered.

4.2. Pathway distance and genome distance

The minimal pathway distances for all gene pairs in
the SMM network were calculated (Table 1).
For the established pairs, the bp separation of the

genes encoding the enzymes in the E. coli genome was
determined. For example, the enzymes glyceraldehyde-
3-phosphate dehydrogenase 2 and phosphoglycerate
kinase (respectively epd and pgk in Fig. 1) have a
pathway distance of 1, and are encoded by genes
separated by only 50 bp. The pair therefore falls into
the first pathway distance bin. However, the enzymes
phosphoglycerate kinase and phosphoglycerate mutase
1 (respectively pgk and gpmA in Fig. 1), which also have
a pathway distance of 1, are encoded by genes separated
by 2,282,661 bp. The percentages of gene pairs in the
first four genome distance bins are plotted against
pathway distance in Fig. 2.
There is a clear correlation between pathway distance

and genome distance. As pathway distance increases, the
percentage of genes separated by short genome distances
drops. For pathway distances of 1, 2, 3, and 4 steps,
gene pairs separated by at most 10,000 bp (i.e., bins
0–100, 101–1000, and 1001–10,000 bp) account for
19.51%, 13.9%, 3.63% and 1.72%, respectively,
of the pairs analysed (Fig. 2). For the other three
distance bins (101,000–1,000,000 and 1,000,001 bp and
above, which are not plotted here), no clear trend is
evident.
A statistical measure is applied to demonstrate that

the results of the analysis are not due to chance. We are
using the standard normal deviate, or Z-score, which
measures the distance of a value from the mean of a
distribution in standard deviation units. For the needs
of this analysis, the mean and standard deviation used
are those of randomised networks. Fig. 3 presents the
Z-score results calculated for the SMM network.
Random interconnected networks were created by

arbitrarily pairing the enzymes of the E. coli SMM,
making sure that the same number of pairs was created
for each distance as for the original E. coli network (i.e.,
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Table 1

Number of gene pairs in the six genome distance bins for each pathway distance

Genome distance bins (bp) Pathway distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0–100 52 45 8 2 3 2 2 0 0 0 0 0 0 0 0

101–1000 12 21 4 2 1 1 1 1 1 1 1 0 0 1 1

1001–10,000 48 63 31 21 17 12 7 7 3 7 3 1 2 2 2

10,001–100,000 25 35 41 55 54 63 59 71 78 93 59 45 43 33 46

100,001–1,000,000 174 311 463 557 645 679 705 777 856 701 516 457 379 304 274

1,000,001–10,000,000 263 453 638 816 1015 1081 1062 1125 1108 1061 766 586 550 507 424

Total 574 928 1185 1453 1735 1838 1836 1981 2046 1863 1345 1089 974 847 747
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the connectivity of all the random networks was the
same as for the E. coli SMM network): 574 enzyme pairs
at pathway distance 1; 928 pairs at distance 2; 1185 pairs
at distance 3; etc. Then, a mean and a standard
deviation of the number of pairs in each genome
distance bin was calculated, by averaging over the pairs
produced for 100 random networks. The distance in
standard deviation units of the mean of the distribution
from the number of pairs of the protein-centric network
existing in each bin and each pathway distance was
calculated: there are 52 pairs with a pathway distance of
1 in the 0–100 bp bin (X0–100), but only 0.75 pairs appear
on average in the same bin for randomised networks

ð %X0�100Þ: The standard deviation for this bin for
randomised networks ðs0�100Þ is 0.78. Therefore, at a
pathway distance of 1 and for the genome distance bin
0–100 bp:

Z02100 ¼
X0�100 � %X0�100

s0�100
¼ 52� 0:75

0:78
¼ 65:75:

The Z-scores indicate how far and in what direction
each item deviates from the random mean, expressed in
standard deviation units. Z-score values greater than 3
are usually considered to be significant. As observed in
Fig. 3, our results for the first three bins and the first
four pathway distances deviate the most from the
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random estimations. After that, the network approaches
a more or less random behaviour in the distribution of
its enzyme pairs.
The patterns observed in Fig. 2 indicate that SMM

genes are ‘‘metabolically clustered’’ on the genome.
Furthermore, the relatively high percentage of meta-
bolic-gene pairs found within 100 bp (a very short
distance in an B4.6Mbp long chromosome) suggests
that this clustering is the consequence of prokaryotic
operon structures in which co-regulated genes are rarely
separated by longer distances (Salgado et al., 2000). The
observation that short genome distances are often
observed for functionally related genes has been made
before (Tamames et al., 1997; Overbeek et al., 1999;
Rison et al., 2002). Here, we show this observation holds
true using co-participation in a metabolic pathway as an
indication of shared function and ‘‘measuring’’ this
relationship using our pathway and metabolic distance
metrics.
An intriguing feature of these results is that the

main ‘‘contributor’’ to the trend shown in Fig. 2 are
the genes within 0–100 bp of one another. The next
chromosomal distance bin, 101–1000 bp, is nearly al-
ways the rarest. A possible explanation for this
comes from assuming an average gene length of
approximately 1000 bp; a length thought to be uniform
in bacterial genomes (Casjens, 1998). Since the 101–
1000 bp just reaches the average length of a gene, it
represents an ‘‘impossible distance’’: two genes
will either be contiguous (and hence separated by
100 bp or less), or separated by at least one gene (so
separated by at least 1000 bp)—thus avoiding the
101–1000 bp bin.

4.3. Pathway distance and function similarity

EC numbers were used as an indicator of shared
function. The EC numbers assigned to each enzyme
were compared, and the level of EC number conserva-
tion was determined. The results are plotted in Fig. 4.
No obvious correlation between EC number and

pathway distance could be established. Furthermore, the
data show that conservation of EC number is relatively
rare at all distances (the percentage of enzyme pairs with
at least two EC levels is always under 8%).
Even at short pathway distances, enzyme pairs only

catalyse the same type of reaction (as defined by an
identical first EC number) approximately once out of 4.
Furthermore, this percentage is relatively constant at all
distances, suggesting no particular bias for EC number
conservation at shorter distances. It is known that the
relationship between EC numbers and pathways is
complex, with pathways requiring a number of enzyme
types to perform their task (Tsoka and Ouzounis, 2001).
These data would suggest that enzymatic chemistries are
varied along the substrate conversion routes. This
contrasts with the recent work of Alves et al. (2002)
who, when analysing the metabolic networks of 12
organisms derived from the metabolite-centric KEGG
database (Kanehisa et al., 2002), concluded there was
often a clustering effect of enzymes belonging to the
same class (i.e., sharing the same first EC number) in
metabolic networks. In Alves’ work, although levels
of function conservation in enzyme less than 3 steps
apart are significantly higher than that in enzyme pairs
more than 3 steps apart regardless of homology, the
correlation is substantially more pronounced when
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considering homologous pairs. In our work, we consider
all pairs regardless of homology. It is hard to directly
compare the two studies since they use different
databases, and the Alves’ study exploits pathway
distance indirectly (comparing conservation of chemis-
try in pairs less than 3 steps apart and pairs 3 or more
steps apart).

5. Concluding remarks

This work has two salient conclusions: (i) the LP
technique is a fast and effective method of analysing
certain properties of metabolic networks; (ii) in our
work, pathway distance and genome distance correlate,
but pathway distance and enzyme function do not,
which offers insight into the likely model of pathway
evolution.
The algorithm that has been presented here is a single-

source shortest path algorithm formulated as an LP
model. The algorithm is characterised by its simplicity
and deals efficiently with network circularity (i.e., cycles
within metabolic pathways). All the computational
experiments were performed on an IBM RS6000 work-
station. In the case of the study of correlations between
minimal pathway distance and genome distance, the
analysis required 127 s for the solution of 540 LPs. In the
case of the study of correlations between minimal
pathway distance and enzyme function, the experiment
required 124 s for the solution of 507 LPs. It should be
noted that these CPU times include pre- and post-
processing of the data, a fairly time-consuming part of
the process.
Minimal pathway distances between E. coli SMM

enzymes have been studied using the algorithm. In our
dataset, human intervention has dealt with the issue of
promiscuous compounds such as ATP, NAD(P) or
water, which if unaccounted for give the representation
undesired properties (Alves et al., 2002).
The correlations between minimal pathway distance

and genome distance and enzyme function have been
investigated. As expected, pathway distance correlated
with genome distance with a higher probability of
proximity on the genome for genes encoding enzymes
involved in nearby metabolic reactions. However, path-
way distance did not correlate with enzyme function as
described by assigning EC numbers to SMM enzymes.
These data, in conjunction with the result of previous
analyses incorporating work concerning sequence
and structural similarity of SMM enzymes (Teichmann
et al., 2002; Rison et al., 2002), suggest a patchwork
model of pathway evolution: the lack of obvious
correlation between pathway distance and EC numbers
is consistent with the ad hoc recruitment of enzymes
where required within the metabolism of an organism
(Jensen, 1976).
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