University Home
Manchester Centre for Integrative Systems Biology

Towards a genome-scale kinetic model of cellular metabolism

Link to journal

The publication can be accessed here.


The yeast genome scale model in SBML format can be downloaded here:

Genome scale model for yeast (5.1MB xml file)

Other supplementary material

Reference fluxes

Control over biomass production

Control over glucose transport


Advances in bioinformatic techniques and analyses have led to the availability of genome-scale metabolic reconstructions. The size and complexity of such networks often means that their potential behaviour can only be analysed with constraint-based methods. Whilst requiring minimal experimental data, such methods are unable to give insight into cellular substrate concentrations. Instead, the long-term goal of systems biology is to use kinetic modelling to characterize fully the mechanics of each enzymatic reaction, and to combine such knowledge to predict system behaviour.

We describe a method for building a parameterized genome-scale kinetic model of a metabolic network. Simplified linlog kinetics are used and the parameters are extracted from a kinetic model repository. We demonstrate our methodology by applying it to yeast metabolism. The resultant model has 956 metabolic reactions involving 820 metabolites, and, whilst approximative, has considerably broader remit than any existing models of its type. Control analysis is used to identify key steps within the system.

Our modelling framework may be considered a stepping-stone toward the long-term goal of a fully-parameterized model of yeast metabolism. The model is available in SBML format from the BioModels database (BioModels ID: MODEL1001200000) and here.